6 research outputs found

    Non-universal gauge boson Z′Z' and the spin correlation of top quark pair production at e−e+e^{-}e^{+} colliders

    Get PDF
    In the off-diagonal basis, we discuss the contributions of the non-universal gauge boson Z′Z' predicted by the topcolor-assisted technicolor (TC2TC2) model to the spin configurations and the spin correlation observable of the top quark pair production via the process e−e+→ttˉe^{-}e^{+}\to t\bar{t}. Our numerical results show that the production cross sections for the like-spin states, which vanish in the standard model, can be significantly large as MZ′≈SM_{Z'}\approx \sqrt{S}. With reasonable values of the Z′Z' mass MZ′M_{Z'} and the coupling parameter k1k_{1}, Z′Z' exchange can generate large corrections to the spin correlation observable.Comment: 16 pages, 5 figure

    Unparticle Searches Through Compton Scattering

    Full text link
    We investigate the effects of unparticles on Compton scattering, e gamma -> e gamma based on a future e^+e^- linear collider such as the CLIC. For different polarization configurations, we calculate the lower limits of the unparticle energy scale Lambda_U for a discovery reach at the center of mass energies sqrt(s)=0.5 TeV- 3 TeV. It is shown that, especially, for smaller values of the mass dimension d, (1 <d <1.3), and for high energies and luminosities of the collider these bounds are very significant. As a stringent limit, we find Lambda_U>80 TeV for d<1.3 at sqrt(s)=3 TeV, and 1 ab^(-1) integrated luminosity per year, which is comparable with the limits calculated from other low and high energy physics implications.Comment: Table 1 and 2 have been combined as Table 1, references updated, minor typos have been correcte

    Dark matter searches at LHC

    Full text link
    Besides Standard Model measurements and other Beyond Standard Model studies, the ATLAS and CMS experiments at the LHC will search for Supersymmetry, one of the most attractive explanation for dark matter. The SUSY discovery potential with early data is presented here together with some first results obtained with 2010 collision data at 7 TeV. Emphasis is placed on measurements and parameter determination that can be performed to disentangle the possible SUSY models and SUSY look-alike and the interpretation of a possible positive supersymmetric signal as an explanation of dark matter.Comment: 15 pages, 14 figures, Invited plenary talk given at DISCRETE 2010: Symposium On Prospects In The Physics Of Discrete Symmetries, 6-11 Dec 2010, Rome, Ital

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    Physics at the CLIC Multi-TeV Linear Collider

    No full text
    This report summarizes a study of the physics potential of the CLIC e+e- linear collider operating at centre-of-mass energies from 1 TeV to 5 TeV with luminosity of the order of 10^35 cm^-2 s^-1. First, the CLIC collider complex is surveyed, with emphasis on aspects related to its physics capabilities, particularly the luminosity and energy, and also possible polarization, \gamma\gamma and e-e- collisions. The next CLIC Test facility, CTF3, and its R&D programme are also reviewed. We then discuss aspects of experimentation at CLIC, including backgrounds and experimental conditions, and present a conceptual detector design used in the physics analyses, most of which use the nominal CLIC centre-of-mass energy of 3 TeV. CLIC contributions to Higgs physics could include completing the profile of a light Higgs boson by measuring rare decays and reconstructing the Higgs potential, or discovering one or more heavy Higgs bosons, or probing CP violation in the Higgs sector. Turning to physics beyond the Standard Model, CLIC might be able to complete the supersymmetric spectrum and make more precise measurements of sparticles detected previously at the LHC or a lower-energy linear e+e- collider: \gamma\gamma collisions and polarization would be particularly useful for these tasks. CLIC would also have unique capabilities for probing other possible extensions of the Standard Model, such as theories with extra dimensions or new vector resonances, new contact interactions and models with strong WW scattering at high energies. In all the scenarios we have studied, CLIC would provide significant fundamental physics information beyond that available from the LHC and a lower-energy linear e+e- collider, as a result of its unique combination of high energy and experimental precision.Comment: 226 pages, lots of figures. A version with high resolution figures can be found at http://cern.ch/d/deroeck/www/clic/clic_report.htm
    corecore